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SUMMARY

This report covers Phase I of a study of Large Waves in Channels,
sponsored by DNA under the SBIR Program. The first phase was
intended to review the knowledge of the behavior of very large
waves in natural channelized geometries. The waves considered
are very long, as might be generated by submerged explosions of
moderate yield. Owing to channelization, such waves may propa-
gate considerable distances with little attenuation. On sloping
banks, the waves are subject to a substantial transverse amplifi-
cation, further increasing their potential effects. Breaking may
occur in the bank regions, subjecting shoreline structures and
facilities to large, destructive effects.

Having demonstrated the potential hazard of channel waves, it is
recommended that Phase II further pursue the three-dimensional
wave theory in order to better define waye transformation, to
remove certain theoretical limitations, to develop expressions
for water particle velocities and accelerations in the bank
regions (for assessment of forces on structures), and to inves-
tigate the conditions under which the bank waves will break,
forming turbulent bores.
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Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY '- BY TO GET
TO GET 4 BY . DIVIDE

angstrom 1.000 000 X E -10 meters (W)

atmosphere (normal) 1.01 25 X E 42 kilo pascal (kPa)

bar 1.000 000 X E 42 kilo pascal (kPa)

ba rn 1.000 000 X E -28 meter 2 (m 2

British thermal unit (thermochemical) 1. 054 350 X £ +3 Joule (J)
caloric (thormochemlcal) 4. 184 000 joule (J)

cal (thermochemlcal)/cm 4. 184 000 X E -2 mega joule/m 2 
(/2)

curie 3.700 00') X E 41 *liga becquerel (CBq)
degree (sgle) 1.745 329 X E 2 radiodn tra

degree Fahrenheit fit (t. W 459.67)/1. 6 degree kelvin (I)
electron volt 1. 602 19 X E -19 Joule (J)
arg 1.000 000 X E -7 joule (J)

erg/second 1.000 000 X £ 7 - watt (W)
root 3. 048 000 X E -1 meter (m)

foot-pound-force 1.355 818 Joule (J)
gallon (U.S. liquid) 3. 785 412 X E -3 meter 3 (m3 )

inch 2. 540 000 X E' 2 meter (m)

Jerk 1.000 000 X E ,9 Joule (J)
Joulo/kiloagram (J/fl) (radiation do**

abeorbedl 1. 000 000 Gray (Gy)
kilotons 4. 183 torajoules
kip (1000 IV) 4. 448 222 X E .3 wmton (N)
kip/nch2 (kit) 6. 694 75? X E -3 kilo postal (kPa)
kap newtoo.a-lcond/m

1.000 000 X E #2 (N-/m)
micron 1 000* 000 X E - mter in)
mi 2. 540 000 X E -S meter (i)

mile (Internatlonal) 1.609 344 X E .3 motor (m
ounce 2.534 952 X £ -2 kilogram (W) C
pound-force (lbt avoirdupois) 4.448 222 newton (N)
pound-force inch 1.129 848 X E -1 newton-mater (N.m) -
pound -(orce/inch 1. 751 260 X E '2 newton/meter (N/m) C

poufnd-forceftoot2  4. 76 026 X E -2 kilo pascal (kP&)
pound -orc/inch 2 (0i) 6. 894 757 kilo pascal (kPa)
pound-mus (Ibm avoirdupois) 4. 535 924 X E -1 kilogram (kg)
pound -mass -fnoi 2 (moment of Inertia) kilogram-meter 2

4.214 0i X E -2 Ik*.m 2 )
pound -masxiool 3 kilIgram/mete r 3

1. G01 44G; X E 4 t i0%/m i

rad (rialiation dose absorbed) 1.000 000 X E -2 *Gray (Gy)
rounlen t coulombA/ilokram

2. 579 760 X £ -4 (C/kg)

shakc I tWil owlQ X Vy -I secunt ()
slug 1.459 390 X E 1 I kolukr:em (k)

Storr lmon lig. 0' C) 1. 3.:1 22 X k -I J kiln pascal kPa)

'l Ix., Iz-q~uerel (1i) is the 51 unit of radioactivity. I Uq - I event/i.
I Ihw Gia' (()l im the SI unit of absorbed radition.
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1. INTRODUCTION

In this Phase I report we present a preliminary review of the
behavior of 'Large Waves in Channels.' The waves of interest are
long oscillatory cr solitary waves such as might be gentrated by
large explosicns, landslides, or other impulsive mechanisms. We
do not consider waves of extreme length such as tides or flood
waves, nor short waves in the range of the normal oceanographic
environment. The waves of interest are those that are longer
than the width of the channel and long with respect to the depth,
but not 'too' long.

The purpose of this small Phase I study is to assess the general
nature of this problem, to review available information, and to
define directions for new research to be undertaken in Phase II;
Phase I, itself, is not considered a research phase. Neverthe-
less, we have felt it appropriate to present some new results
even here, as will be shown later.

Lituya Bay is situated on the Gulf of Alaska south of Yakutat.
As shown in Figure 1, it is roughly T-shaped, approximately eight
miles long, and two miles wide; depths of several hundred feet
are common. The landslide (documented in Miller, 1960) took
place in the northeast portion of Gilbert Inlet (shown shaded in
Figure 1). Approximately 40 million cubic yards of rock des-
cended at high speed into the Bay with devastating results.

The southwest bank of Gilbert Inlet directly opposite the slide
was inundated by the slide-generated water waves, to a height of
over 1500 feet, completely leveling forest to that elevation-
(Iida, et al, 1967). This is certainly dramatic, but perhaps not C

unexpected considering the proximity of the landslide -- the
opposite bank was in the direct path of the 'splash' generated by
the intruding mass.

More interesting were the effects outside the immediate region of
the slide, along the banks of the central portion of the Bay.
According to Iida, et al (1967) and Wiegel (1964), a large wave
progressed seaward through the Bay with heights of 200-300 feet,
as estimated from the elevation to which large trees "were
removed as if they were matchsticks" from the side slopes
(Wiegel, 1964).

The dotted contours in Figure la show the elevation of destruc-
tion, the numeric labels being height in feet. On the northern
bank one sees heights of about 90 to 200 feet, while on the
southern bank damage elevations range from about 100 to 600 feet.
The Bay both before and after the slide is shown in Figure ib,
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reproduced from Wiegel (1964). These photos show the large areas
of forest destroyed by the passing wave.

There are two major reasons why waves in channels pose a special
problem. First, the channelized geometry conducts the wave
energy from the source to a site a distance away with very little
loss. This is in contrast to the usual case of explosion waves
in open water. In open water, an impulsive wave system is free
to expand in all directions; radial spr-eading causes a wave
height reduction which is proportional to the square-root of
distance, leading to rapid decay of height. As ordinary waves
approach a slope they refract and their heights are limited by
breaking. But in a channel, the causes of height reduction are
limited to dispersive spreading (small for long waves) and energy
loss. The major source of energy loss may be turbulent breaking
in the zones of shallow flow on the banks. But these breaking
zones are precisely the damage zones, so that breaking should
actually be considered a damage mechanism, not a mitigating
damping mechanism. The wave height in the bank zone is replen-
ished by lateral flow. These differences are summarized in the
schematic sketches of Figure 3.

The second factor contributing to a high hazard in channels is

the possibility of significant amplification of wave height on
the banks. As we shall show later, our Phase I work indicates
that amplifications of a factor of two or more are to be expected
on typical bank slopes for moderately wide channels. This
amplific3tion is found as a higher-order approximation to
solitary wave theory. The three-dimensional solitary wave theory
described later reveals that a large transverse variation of wave
amplitude is characteristic of solitary waves in channels and
that the degree of amplification at the banks depends upon both
channel width and bank slope. The general nature of the trans-
verse variation is found to be consistent with the limited
available experimental data.
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The explosion (or landslide) waves discussed here are, in a
sense, a more focused phenomenon. Under proper circumstances,
they will propagate with almost no reduction in height for
considerable distances. Their effects are greatest along the
shorelines (the banks), rather than in deeper water. The major
dissipation is the destructive near-shore breaking which, being
of limited extent (concentrated right at the bank), may not
attenuate the wave 'too' fast.

T e m r -

a

C

The major content of this report is contained in Sections 3 and 4
where we describe and implement a three-dimensional solitary wave
theory to estimate the lateral enhancement of wave height. We
have worked out the analytical solution for triangular channel
cross-sections and have constructed a simple numerical model for
the simulation of a range of trapezoidal channel geometries. It
is found that amplification factors of two or more are realistic
for natural channels. We also briefly describe the effects of
friction and channel bifurcation as dissipative mechanisms.
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Our Phase I study shows the importance of channel effects and
indicates the direction of work required for a better
understanding of this sort of wave behavior. In particular, no
investigation of particle velocities in the bank zones has been
undertaken, and no information is available describing the
breaking characteristics on the banks. Both of these iquestions
are vital for an understanding of dynamic effects. There is also
almost no experimental data to guide the development of theories
or to verify them. Consequently, we conclude by recommending a
program of theoretical and numerical work supplemented by small
scale laboratory tests for a Phase 11 continuation,
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2. REVIEW OF PRIOR WORK

2.1. Source Mechanisms

We consider two primary source mechanisms for the sort of waves
under consideration here: explosions and landslides. In both,
active research is underway elsewhere and has reached aistate of
adequate understanding for the purposes of this study. Conse-
quently, our concern is limited to adopting appropriate order-of-
magnitude data as input.

2.1.1. Explosion Sources

Explosion wave prediction (see LeMehaute, 1971, for a general
summary) is accomplished by calibration of idealized models of
wave generation by an initial free-surface deformation. The
source is usually assumed to be a symmetric 'crater' which
collapses under gravity yielding an outgoing wave system.

The initial crater is fictitious in that its shape is chosen so
that the mathematics is tractable, and its dimensions are chosen
so that predicted wave heights and periods-match observations
reasonably well. The predicted waves are obtained by the
transform methods originally introduced by Kranzer and Keller
(1959).

Considerable effort has led to the establishment of reasonable
shapes for the source crater as well as to empirical scaling laws
relating crater dimensions to weapon yield and placement. For
example, in deep water, the familiar curve shown in Figure 4 is
obtained, relating the product of maximum wave amplitude, n , and
range, r (this product being conserved in deep water) to ex-
plosion yield, W, and depth of burst, z. Although this data
shows a narrow peak in wave height for shallow bursts (the so-
called upper critical depth effect) it is adequate for our
purposes to follow LeMehaute (1985) and adopt an average value
given by

- rluax - 8WO. 5 4 /r

in which the dimensions are feet and pounds of TNT-equivalent.
Similarly, one can take for the wave period T (in seconds)

T - 1.7WO. 1 5

from which the length can be calculated.

These deepwater relationships will not generally be appropriate
for waves in channels, however, owing to the relative shallowness
of most real channels. The effect of shallow water is to greatly
reduce the efficiency of wave generation.

Wang, et al (1977) reviewed available explosion data foe shallow
water (especially the data of Strange, 1955) and revised the

11
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scaling laws accordingly. As given in the recent summary of
LeMehaute (1985), Wang's revised expressions are

B 0.25 + B/3 1/3 0.93
nmaxr/(W ) - 1.44 (d/ W )

1/3 0.0078 = 0.83 (d/ W )

1/3
These expressions are appropriate for reduced depths (d/ W )
less than one (the original data being from 0.088 to 0.585).

The deepwater relations given above can be accepted for reduced
depths greater than about six. For intermediate depths,
LeMehaute (1971) suggests that heights should be reduced by half
between a reduced depth of 6.0 and a depth of 1.0; a simple
linear variation is suggested.

An important question for channel waves is the dependence of wave
length on water depth for a given explosion yield. In order to
exist and survive, these waves must be longer than both the
channel depth and the channel width.

It seems reasonable on physical grounds to argue that the wave
length of the highest waves generated by an explosion will be, if
not independent of, at least insensitive to the water depth. The
dominant length scale in the spectrum of waves generated by an
initial 'crater' must be of the same order of magnitude as a
characteristic horizontal measure of the crater itself. That is,
we should expect energy to be concentrated at lengths near the
diameter of the crater, within a small factor.

Indeed, data shows that in deep water the length of the largest
waves is about three-fourths the assumed crater diameter,
confirming our assumption.

Now, in shallow water it is reasonable to assume that to a first
approximation the horizontal scale of the crater is unaffected by
the depth. That is, the blast creates a disturbance which has F
about the same diameter no matter what the depth is, although the

- vertical crater scale might be substantially affected.
C

In the absence of a better simple alternative, we shall then
assume that wavelengths in channels can be estimated from
deepwater empirical relationships. Should it be necessary to
estimate wave periods, one can simply work backward from the
length and the depth.

2.1.2 Landslides

A detailed numerical model of landslide generated water waves was
developed by Chiang, Divoky, Parnicky, and Wier (1981). This
model incorporates a sophisticated 'box-car' model of landslide
dynamics on an arbitrary slope, accounting for the interaction of
the slide with the water upon entry into the basin. This coupled
calculation then proceeds to follow the generation and propaga-

13



tion of the water waves. Other models of varying complexity have
been developed by a number of authors including especially Raney
and Butler (1975) and Noda (1969), the latter being an analytical
development describing the intrusion of a mass of simple shape
into a fluid.

It had been hoped that the model of Chiang, et al,'could be
converted from mainframe to PC for the present study and that
simple example cases could be run for an idealized geometry.
However, this proved impossible within the limited Phase I
resources.

More than adequate for our purposes, however, are empirical
guidelines. Slingerland and Voight (1982) present a simple
regression model relating landslide induced wave height to slide
kinetic energy and water depth. Their expression is

log(nmax/d) - a + b log(E)

in which a and b are regression coefficients and E is a dimen-
sionless slide kinetic energy given by

E - 1/2 MV 2 /(Pgd 4 )

Here, M is the slide mass, g is the acceleration of gravity, and
V is the maximum slide velocity. The wave amplitude nmax is the
value observed at a standard reference distance of 4d from the
slide point of entry, and assumes that the waves spreads freely
into a 180-degree half-space. Should the slide occur at a
corner, Slingerland and Voight recommend the artifice of simply
adjusting the assumed energy in order to account for the effects
of reduced spreading area.

Figure 5 shows the regression relation along with the data points
upon which it is based. It is clear that within this data base,
the simple relation suggested by Slingerland and Voight is
entirely adequate. F

To use this formula for a first order estimate in channels (with
slide intrusion assumed to occur on one side), the amplitude
should be adjusted to account for channel width. It is reason-
able to imagine that the height which should be considered the
initial height for propagation in a channel is approximately that
obtained when the expanding semi-circular wave encounters the
opposite bank. At this time, complicated reflection and dissipa-
tion processes on the opposite bank truncate the wave expansion
and leave two segments of the wave to propagate up- and down-
stream. These segments are perpendicular to the bank on the near
shore but are curved toward the bank on the opposite shore,
leading to additional dissipation. However, if the wave is
reasonably long compared to the channel width it may be assumed
that it will tend toward cross-channel uniformity with distance.

I

Since the regression expression of Slingerland and Voight adopts

14
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a reference distance of 4d, the height prediction must be scaled

by a factor such as

(4d/Bo)P

in which B o is the channel width and p is an exponent ranging

between 0.5 (longwaves, no dispersion) and 1.0 (fully dispersive
waves). It is recommended that p be taken as 0.5 unless the
channel is quite deep; this choice will tend to slightly underes-
timate the wave height, helping to compensate for unconsidered
dissipation.
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2.2. Wave Behavior

2.2.1. Theoretical Descriptions

Very little of the literature on waves in channels is pertinent
to this study, most dealing, for example, with the propagation of
flood waves or dam-break waves. These are phenomewa quite
distinct from the explosion-scale intermediate waves of interest
here.

However, a small number of papers were found which are directly
applicable, developing a theory of cnoidal and solitary waves in
channels of arbitrary cross-section. When taken to higher order,
these theories are capable of describing major features of flow
in the sloping bank regions which are the areas of primary
interest in this study (up to the point of breaking, that is).

The papers of interest followed the important earlier work of
Korteweg and de Vries (1895), Ursell (1953), and Benjamin and
Lighthill (1954) who laid the necessary groundwork. Korteweg and
de Vries and Ursell had clarified the roles played by the two
fundamental dimensionless length scales involved in longwave
theory. These are a and c defined by

o M h/L C = l/h

in which h is a typical depth, L is a horizontal length scale
such as wavelength, and n is a typical amplitude.

Ursell showed that the simultaneous smallness of 0 and C does not
lead to a unique theory as was assumed (the longwave paradox),
but that the relative magnitudes of these parameters is equally
important. The combined parameter

U = a02

is called the Ursell parameter and can be interpreted as a C.
measure of the relative importance of nonlinearity, which tends

- to steepen the wave with propagation distance (measured by C), o
and frequency dispersion, which tends to broaden the wave
(measured by a ). It was shown that when the parameter U is on
the order of unity, these opposing tendencies may balance,
permitting the existence of waves of permanent form.

Korteweg and de Vries (1895) and Benjamin and Lighthill (1954)
developed the governing equations for cnoidal waves (and, in the
limit, solitary waves) , the latter in terms of gross flow
quantities.

Peters (1966) considered solitary waves in a channel of arbitrary
cross-section. His paper is of interest since he first develops
the rotational case and then the irrotational case as a limit.
He also gives an analytical solution for semi-circular'channels
which will be discussed in a later section.
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The papers of most interest are those of Peregrine (1968) and
Fenton (1973). The work of these authors is quite similar. Both
consider long waves in arbitrary channels and derive similar
expressions for flow quantities. Peregrine's development is the
more standard, being in terms of particle velocities and eleva-
tion whereas Fenton's approach is really an extension of that of
Benjamin and Lighthill, being defined in terms of integrated flow
quantities.

Although we shall show Peregrine's development in a later section
(upon which we have based a preliminary model of transverse wave
amplitude variation), Fenton's derivations present certain
conceptual advantages. In particular, he retains both a and e in
his derivation, thereby showing precisely their relative impor-
tance. Peregrine, on the other hand, simply sets U - 1 and
suppresses a in favor of E.

These papers do not go much beyond development of the governing
equations, except to discuss the transverse amplitude variation
in a general way. No pursuit of particle velocities is made, for
example, such as will be necessary to defini breaking criteria
and dynamic effects.

2.2.2. Observations

Experimental observations of the important features of waves in
channels are almost totally lacking. In particular, we are
interested in the transverse wave profile and the likelihood that
amplitudes on the banks may be significantly greater than at the
center of the channel. 0

It is not clear why this has not been a topic of interest. A 9
large quantity of experimental data for trapezoidal channels is
reported in Benet and Cunge (1971) which was expected to be a
good source of data for this review. Surprisingly, however, the
critical data is not reported. All measurements seem to have C
been made on the banks and what appears to be amplification data
is actually the ratio of peak bank height to the surcharge in
mean water level associated with a sudden discharge.

0

Data for waves impinging at a small angle to a slope was obtained
by Divoky and Lane (1973), but is of limited use here. Firstly,
the waves were not long with respect to the depth and secondly,
the test arrangement was in a 2-D basin, not a channel. Conse-
quently, the waves in many cases were not propagating stably, the
observed amplifications showing considerable scatter.

Nevertheless, it may be of interest to show the most pertinent
cases. Figures 6 and 7 show the observed amplitude profiles
along a crest for nominal angles of incidence of 0 and 3.5
degrees, for three nominal beach slopes: 20, 30, and 45 degrees.
The water depth at the toe of the slope was 1.2 ft and the wave
period was about 1.1 seconds. Amplitudes along the crests were
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measured with a resistance gage or, on the slope, estimated from
the limit of the wetted-zone. Amplitudes were arbitrarily
normalized to unity at the farthest offshore points.

It can be seen from these figures that for both 30 and 45 degrees
there is an amplitude enhancement of as much as a factor of four.
On the 20 degree slopes, however, amplifications were only about
half as large. The reasons for this were not evident, especially
since the same trend is observed for both breaking and non-
breaking waves, but it does seem to be a consistent feature of
the data for waves of grazing incidence. Perhaps, because of the
small experimental scale, scale effects became disproportionate
in the shallow wedge region of the bank in the 20 degree case.

The wave generator was adjusted to produce both small waves
showing no near-shore breaking, as well as larger waves revealing
breaking at the tip of flow. It was found that for 0 degree
incidence, wave breaking occurred for a deepwater wave steepness
Ho/L o of 0.01, 0.013, and 0.017 for beach slopes of 20, 30, and
45 degrees, respectively. The same trend was observed for an

* incident angle of 3.5 degrees, with each critical steepness about
0.003 higher than for the 0 degree case.- For less oblique
incidence, the breaking criterion became extremely erratic
reflecting the complex behavior in a Mach-stem zone.

The final -- and most pertinent -- dat-is that obtained by
Peregrine (1969) in two small lab test series. The results are
semi-quantitative, being presented only as two drawings of
surface profile across half trapezoids for various center
amplitudes. Both cases involved side slopes of 45 degrees, one
having a bottom half-width of 1.5, the other 2.0 (normalized by
depth). These are reproduced in Figure 8. The elevations shown
at the left edge (full-channel center line) are normalized by
depth. The solid lines represent the crest profiles, while the C
small x's indicate the corresponding values from Peregrine's
model. In general, the agreement is seen to be very good.
Surface heights at the banks appear to be about 50% greater than
at the channel center for the larger amplitudes.

CNote in particular that in the case of a bottom width of 2.0 and
a center amplitude of 0.27, the crest at the bank is breaking, or
nearly so. Despite this, the theoretical prediction appears
quite good.

2
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3. WAVES IN A UNIFORM CHANNEL

3.1 Nonlinear Three-dimensional Waves

3.1.1 Theoretical Development

We have adopted the development given by Peregrine (1968) for use
in this study. As noted earlier, Peregrine's formulation is more
immediately useful in our context than is the presentation of
Fenton, for example, although the essential features remain the
same. Consequently, this summary follows Peregrine closely.

Consider a cartesian coordinate system embedded in the still
water surface with the x-axis taken in the direction of wave
propagation, the y-axis taken transverse to the channel, and the
z-axis positive upward (Figure 9 ). The y-origin may be visual-
ized as above the channel invert or, in our later consideration
of symmetrical channels, at the midpoint of the cross-section.
We consider the flow to occur in a channel of arbitrary, but
uniform, cross-section; that is, the.cross-section is defined by

Zc - Zc(y) (1)

which is independent of x.

Introduce dimensionless variables

(x,y,z) - (x*,y*,z*)/ho

t - t* /(g/h o )

(u,v,w) - -- * / /(gh0 )

p - (p* - po)/pgh o  (2)

in which the starred quantities are dimensional, g is the
acceleration of gravity, ho is a characteristic water depth (such C

as the maximum undisturbed depth), (u,v,w) are the components of
the fluid particle velocity t, p is pressure, and Po is at- C
mospheric pressure.

Neglecting only the shear stresses, the momentum equations become

simply the Euler equations,

dt + (.7V)T + Vp + (0,0,1) 0 (3)

and the incompressible continuity equation is just

- 0 (4)

This can also be written in terms of the macroscopic quantities Q
and A (volume flux and instantaneous wetted cross-section) as

At + Qx - 0 (4a)
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We obviously have

A = A(x,t) and Q = 11A u dydz

We assume irrotational flow so that

V xu - 0 (5)

The free surface is denoted by n ; on the surface

z = n(x,y,t)

where we must satisfy the boundary conditions

p= 0

nt + Ux + Vy = w (6)

Note that in these equations and those to follow, we adopt the
subscript convention to denote partial differentiation (in the
interests of notational simplicity).

Two dimensionless relative length scales are now introduced in
order to proceed with an expansion of these equations. These are
the relative depth, 0 , and the relative amplitude, C , given by

o - ho/L*

C = a*/ho (7)

in which L* is a characteristic wavelength and a* is a measure of
the peak amplitude.

In our problem, we assume that c is very small since we are
restricting attention to long waves. We will also assume thatc
is small, although we shall be interested in waves which may be a
few tenths of the depth in height.

C
A number of authors have shown (for constant depth or rectangular
channels) that solitary waves of unchanging form are possible
only if a balance exists between two processes measured by C and
c. The effect of finite amplitude, measured by C, is to cause a
steepening of wave form with propagation distance, eventually
leading to breaking. The effect of frequency dispersion,
measured by 0, is the opposite, tending to reduce average
steepness with distance. If these opposing influences are
comparable, then a finite-amplitude wave of permanent form is
possible. Not only solitary, but also periodic waves -- the
cnoidal wave approximation -- are found in this case, although we
shall in this preliminary review focus on the solitary case.

Ursell (1953), in particular, clarified the importance of the
relative magnitudes of a and c, showing that the ratio
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3
U - / o 2 = a*L* 2 / h o  (8)

is of fundamental importance. A unique theory is not guaranteed
by the simultaneous smallness ofo and c. Instead, the magnitude
of U (the Ursell parameter) must also be specified. Only when U
is of order unity do finite-amplitude permanent forms arise.

In order, then, to obtain the wanted solution Peregrine adopts
the assumption that U - 1, replacing a by c in his development.
It might be noted that in the similar work of Fenton (1973) U is
also assumed to be of order unity but both a and c are retained
in the expansions, greatly clarifying their roles and the order
of approximation at each stage. While we follow Peregrine here
for simplicity, future work would more likely be based on the
approach of Fenton.

The independent variables are first scaled as

xI - x/c ti - t/C (9)

which are simply x*/L* and t*/T, where T is a characteristic time
scale such as the characteristic length L* divided by the speed
of longwave propagation. The variables n and u vanish in the
absence of waves (neglecting a mean currentr) and so are expanded
in the form

Cf1 + O~f 2 + ..-

U

The cross-sectional velocities are expanded as
0

Cfl + Of 2 + ... )
3

and the variables p and A, not vanishing, are taken to be of the
form

U

fo + Cfl + Of 2 + -.. C

* The expansion solution is now straightforward. The expanded D
0forms are substituted into the governing equations, terms of the C

same order are grouped and equated to zero, giving successive
approximations to the dependent variables. sS

It is easy to see that the only zero'th order solutions are

P0 M -z and Ao - constant

That is, the pressure is hydrostatic and the cross-sectional area c
is constant (assuming a uniform channel) to this approximation.

Peregrine obtains the first order approximation by defining a
two-dimensional velocity potential function 01(xly,z,t0 such
that
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Vl ely and Wl= "Iz (10)

which is permitted by the irrotationality condition to the first
order (Eq 5)

VIz - Wly = 0 (1l)

Equation 5 also shows that to first order u is independent of y
and z so that

u = ul(xl,t I )

Using Peregrine's two-dimensional gradient operator defined as

V, = (0, D/ y , 3/ z )

the first order y and z momentum equations yield

VIP, = 0

Expanding the pressure condition on- the frte surface gives the
first order condition

Po + cPl - 0 on z = rql

so that the first order expression for p is' found to be

P l (xltl) - '1l(xl,tl)

The x momentum equation at first order is found to be

(ul)tl + (fl)x1  - 0 (12)

and the integrated form of the continuity equation is, similarly,

(Al)t, + (Ql)x, - 0

Letting the width of the channel be denoted by B(z), it is clear
that the first correction to channel cross-sectional area is

Al - B(O)fl I - BorI

Furthermore, we must have QI a Aoul so that the continuity
equation can be rewritten as

Bo(nl)t + Ao(Ul)x, - 0 (13)

Now, uI is eliminated from Equations 12 and 13 giving

(nl)ti tI - Ao/B o  (nl)x I x 1 (14)

This is just the wave equation from which we can identify the
first approximation to the wave celerity, co , to be given by
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2

C o = Ao/B o  (15)

which is just the mean depth of the channel.

Now we introduce the cross-sectional velocity potential.into the
continuity equation (Eq 4), finding

(Ul)x + 72 I = 0

On all solid boundaries we must satisfy ( (0)n = 0 and on the
surface the first order condition

( -c0 (Ul)x, at z - 0

where an n-derivative has been replaced by a u-derivative using
Equation 13.

Guided by inspection of this last expression, Peregrine intro-

duces a new function, 4P, defined by

*(xl,y,z,tl) - . (ui)xq,(yz)

Comparison with the foregoing equations shows that 4 must satisfy

V1  = 1 everywhere"

4n- 0 on solid boundaries

0 on z - 0 (16)

C
Clearly, this is a well-posed Neumann problem which we solve€
numerically in a subsequent section.

I

To obtain the transverse variations, it is necessary to proceed C
to the next approximation. Collecting terms through the second
order in c in the momentum equation gives

S(Vl $1)t + VlP 2 - 0 (17)
C

which can be integrated to yield C

P2 - (Ul)x~t4, (y,z) + D(xl,tl)

in which D is an arbitrary function. The free surface pressure
condition at this order is P2 = n2 so that the expression above
immediately gives the transverse wave amplitude variation as

r2 - (ul) t, 
4,(y,O) + D (18)

In other words, the variation of the free surface is like 40(y,O)
which is obtained as discussed above. r

From the irrotationality condition, taking the y and z components
to 0(C2 ), Peregrine shows the next approximation for u to be
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u2  - -(ul)x x, (y,z) + E(xltl) (19)

in which E is arbitrary (obtained by an integration as in
Equation 18).

Proceeding, the next order in the x-momentum equation (to E 2 ) is
found to be

(u2)t + ul(ul)x + (P2)x 0

Neglecting the cross-sectional variations in both u2 and P2 this
becomes an equation relating D and E

Et + ul(ul)x + Dx1 = 0 (20)

Now, assuming that over the small range from the still water
surface to the instantaneous surface, the top width is given by

B(z) - Bo +

and incorporating the transverse variation of Equation 18, the
second order term in the expansion of flow area is

A2 - B1 91/2 + BoD + Bo1B(11 )x; (21)

Here, B1 denotes the slope of the bank at z a 0, and 41B is the

mean value of IP on the surface given by

B = 1/Bo B W(y,O)dy (22) C

Similarly, the second order term in the flux, Q, is shown to be

Q2 - Boulnl + AoE - AoWA(ul)xi x (23)

in which WA is the mean value of ) over the entire cross-section
given by c

4'A - 1/A0  A W(yz)dydz (24) C
IIA IC

Peregrine now introduces another transformation of the dependent
variables, introducing quantities which are correct to the second
order, but neglecting the cross-sectional variations. That is,
for the free surface, define

2

- cii + cD

while for the longitudinal flow define

u EujI + OE

With these definitions, one now combines C times Equation 12 withE 2

times Equation 20, reverts to un-scaled x and t coordinates, and

finds for the momentum equation
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ut + UUx + x - 0 (25)

The continuity equation is not as simple, being
2,t

(+ k;2 /2) t + 0  + u' )x + (WB - 4JA)(U )xtt -0 (26)

in which k is BI/B o .

A solution of these equations which is extremely similar to the
familiar solitary wave is

x - ct a (1 - kc'/3) 1/2

a sech 2  2 (27)
2 C' (B A)

in which the wave celerity is given by

7 c - co[1 + (1 - kc2/3)a/2c2] (28)

Peregrine (1968) concludes at this point without presenting an
explicit expression for the transverse amplitude variation. The
missing steps are easy to supply, however. In Equation 18 we
replace the time-derivative of velocity by- the x-derivative of r)
using Equation 12. This second derivative of n is then evaluated
using Equation 27. Since we are interested only in the crests,
we then set the phase position to zero and find the transverse
variation of amplitude, a, to be

a' B (1 - BIAo/3B;) ;P(y,O)
a - a + 00 1 0 (29)

2A0 ( B - 1A)

This result is given both by Fenton (1973) and in a second paper
by Peregrine (1969), the latter without derivation. In this
expression, a o is the wave amplitude at the minimum of ' (y,O)
which we shall later construe to be at the center of a simple, c
symmetric cross-section (in fact, at y - 0).

C
C

We should note before concluding this section that two limita-

tions are inherent in the theoretical development (beyond the
requirement of small 0 and C ). First, it was tacitly assumed
that the bank slope is not too small. This arises in Equa-
tion 21: if Bi is large owing to an extremely gentle slope, its
contribution is no longer second order, violating the assumption.

The second limitation is that the channel should not be too wide
compared with the depth. Peregrine (1969) shows that contrary to
expectation, increasing the channel width eventually causes such
a large transverse amplitude variation that the assumption of
small amplitude must be violated. r

This completes the theoretical developmcnt of the topic to the
extent needed for this preliminary Phase I effort. We shall
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suggest that in Phase II we pursue this theory along three major
lines:

*) Investigation of particle velocities in the bank-area for
the determination of forces on bank structures

*) Investigation of both velocities and accelerations at the

crest in the bank area in order to define wave-breaking
criteria (both kinematic and dynamic)

*) Generalization to remove or mitigate the errors as-
sociated with increasing channel width and decreasing bank
slope

0
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0

0
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3.1.2 Analytical Solutions

Analytical solutions of the foregoing equations have been
obtained only in a small number of simple geometries. For
example, in a rectangular channel (physically equivalerjt to the
unbounded constant depth case) we have

'(y,z) = W(z)
2

= co = 1 at z = 0

1z = 0 at z = -1

with which (guessing a polynomial solution) we immediately find

= z + z 2/2

Isolevels of 'P are horizontal and consequently all cross-section-
al flow is vertical (perpendicular to the isolevels). Equa-
tion 29 shows that the surface is level since. is not a function
of y (and we have tacitly taken the arbitrary constant in the
solution for 4) to be such that 4) is zero on the free surface).
This is, of course, a trivial case.

Somewhat more interesting is the result found by Peters (1966)
for a semi-circular cross-section. The expression for 4) is
moderately complex, and gives the following approximation for
bank amplification of wave amplitude

ab/ao . 1 + ao/6r
C

In this expression, ab is the amplitude at the shore and r is the
circular channel radius. It is noted that the amplification is
quite small. Even for near limit wave amplitude, the ratio is C

only about 1.1, or a 10% increase near the banks. Physically,
this seems to be due to the fact that the banks are vertical at
the still water level, and nearly vertical over a substantial
depth.

A third analytical solution of more practical interest can be
found for channels of triangular cross-section. Guessing a
polynomial expression and noting that c is 1/2 for a triangle,
it is easy to find

= z/2 + (y 2 + z2)/4

Again, the arbitrary constant is chosen so that 'P is zero at the
origin. We have Ao = Bo/2 in this case and Bi - Bo . The sloping
bank is defined by

y - (1 + z)Bo

which becomes the upper limit on the inner integral for 'PA
(Equation 24). We find, after some algebra
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B B / 12

IPA= (Bo - 3)/24

so that Equation 29 reduces to

a = ao + ao j5y2/(3 + Bo

Of greatest interest is the amplitude at the bank (y = Bo) which,
when normalized by the central amplitude, is the amplification
factor given by

R-ab/ao - 1 + aI B/3 Bo~

Note that Bo is just tan(a) where a is the angle between the bank
and the vertical. We shall denote the angle between the bank and
the horizontal by 6.

The following Table shows the variation of R-with both side slope
and center-channel amplitude for triangular channels.

Re, degrees ao - 0.1 O.Z, 0.4 0.6

15 1.41 1.82 2.64 3.47
22.5 1.33 1.66 2.32 2.98
30 1,25 1.50 2.00 2.50
45 1.12 1.25 1.50 1.75
60 1.05 1.10 1.20 1.30

It is seen that the amplification of wave height on the banks is
sensitive to both bank slope and center-channel wave amplitude.
The amplification rises sharply with increasing amplitude.

U

It is of interest that Peregrine (1968) notes the triangular
solution in a particularly elegant form, although he does not go
on to provide the development for amplitude variation given here.
In his expression for 4, he takes the origin at the channel
vertex for which

0(yz) - (y2 + z 2 ) / 4

This shows clearly that the isolines of 'P are segments of
circles. Since in a triangle the banks are simply radii of these
circles, the solid wall boundary condition is satisfied by
inspection. Surprisingly, all cross-sectional motion must be
radial from the channel invert. This also helps to make clear
why all triangular sections have the same form for '.

No other analytical solutions have been found.
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3.1.3 Numerical Solutions

We have implemented a numerical model based on the foregoing
theoretical development for the case of trapezoidal channels.
The model at this time is limited to determination of-the wave
crest profile across the channel to investigate bank amplifica-
tion effects, as described above for the known analytical
solutions.

It is first necessary to solve numerically for 4J throughout the
domain, satisfying the Poisson equation and boundary conditions
of Equations 16. Then we apply Equation 29 to determine the
surface transverse profile.

We have adopted a simple Simultaneous Over-Relaxation scheme,
based in part on the methods described in Press, et al (1986).
Since we are restricting attention to trapezoids in this Phase I
numerical effort, we need model only half the channel, from the
center to either bank. Then, by symmetry, the appropriate
boundary condition on y = 0 is the- same a.s for a solid wall
running down the center of the channel:

y = 0 at y a 0 (30)

Letting j and k denote indices in the - and z-directions,
respectively, the Gauss-Seidel difference expression for an
interior point is simply

*n+1 n n+1
-,k - 1/4 lj+l,k + 4'j-l,k + Wj,k+l + 'j,k-1 - x2 (31)

in which we assume a square mesh. Letting the over-relaxation C

weighting factor be w, te updated quantity is

n+ W)
'j,k = W q~j k + (1 - k (32) C

It is not clear what the optimum choice of w might be for our
geometry. But in view of the speed and economy of desktop PC's, c
expenditure of effort to determine an optimum value is not
worthwhile. Instead, we have simply adopted values appropriate C
for the bounding rectangular domain, assuming these to be a
reasonable guess for our somewhat truncated region.

Therefore, we take
2

w 2 / 1 + 1(1 - j)] (33)

in which Pj is the Jacobian spectral radius given by

pj - 1/2 [cos(r/J) + cos(7'/K)] (34)

with J and K being the (integer) dimensions of the gridf Again,
this expression assumes a square mesh.
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The domain is sketched in Figure 10a. On the left boundary, we
set W equal to the old values one column to the right. On the
bottom boundary, similarly, we set $ equal to the values just
above. For most of the top boundary, we set tD equal to the
values just below plus a constant equal to the space step times
c .

On the right (sloping) boundary, we construct a perpendicular
from the boundary cutting either a vertical or horizontal side of
an adjacent cell (depending upon bank slope). The value assigned
to the boundary point is the value interpolated from the end-
points of the intercepted side.

Difficulty comes for the free-surface condition in the vicinity
of the bank for gentle bank slopes (small e ). In this case,
there may be several surface points for which there does not
exist a valid adjacent point on the second row (points on the
second row lying below the slope, outside the domain) on which to
construct the surface gradient. This case is sketched in
Figure lOb.

After some experimentation, we have adopted the following
artifice which has appeared to work adequately. From the surface
point of interest, point A for example, 'dop vertically to the
bank (point B). Then from this point, construct a perpendicular
to the bank intersecting the free surface at point C. By the
zero gradient condition op. the bank, approximate ') at B by the
interpolated value of W at C using the most recent values on the
first row. Then, by the surface gradient condition, add theC2 6
quantity c0

6 Z in which 6 z is the distance between points A and B.

Finally, at the conclusion of each iteration, the value of 4)(0,0)
is subtracted from every grid point, thereby fixing the arbitrary
constant in 4j appropriately. A convergence test is made on the
trace of the matrix, with termination upon achieving a relative
change of less than 10 - 6 (with a minimum of 100 iterations,
however).

With these conditions, we have successfully simulated a range of
trapezoid geometries and wave heights. The source code for the
model is included as Appendix A of this report (written in Pascal
suitable for PC applications). Results obtained with the model
will be shown in Section 4.

3
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3.2 Damping

3.2.1 Frictional Damping

Frictional damping is not usually much of a consideration for
explosion wave propagation. In open water, radial spreading
causes a rapid drop in height; this loss is compounded by
frequency dispersion if the depth is not too small. Breaking may
also be encountered. However, in the case of the surf-zone
effect (the so-called 'Van Dorn effect'), LeMehaute (11985) has
shown that friction may play an important role owing to the long
distances of propagation over a gentle slope and the reduction of
radial spreading by refraction. Whether shoaling is adequate to
maintain a destructive breaker or whether friction may be just
large enough to keep the waves sub-breaking, could be a critical
question.

For waves in channels it is possible that friction may be of
moderate importance since radial spreading is eliminated, depths
may be small, and breaking is restricted to limited zones at the
banks. Of course, depending upon the geometry, other decay
mechanisms such as channel branching-and irregularity are likely
to be much more important than friction in causing the eventual
demise of a wave. Overall, friction is probably a secondary
consideration, although still of interest.

The long waves of interest here may be approximately cnoidal in
form, or, in the limit, solitary. This indicates that the rate
of loss under crests will be much greater than under troughs
owing to the concentration of velocity near the crests and to the
fact that the dependence on velocity is quadratic.

Consequently, it is of interest to assess the magnitude of
frictional damping from the standpoint of cnoidal or solitary
waves rather than sinusoidal waves. In this Phase I effort we
have gone part of the way toward that goal, while avoiding
unnecessary complexity, by starting from the 'hyperbolic wave L
theory' of Iwagaki (1967).

Hyperbolic waves are simply a practical approximation to cnoidal o

waves of sufficient length. Cnoidal wave theory is expressed in
terms of the elliptic integrals E(k) and K(k), and the Jacobian ?

elliptic function cn(8;k). For waves with sufficient amplitude
and length, the parameter k is very nearly unity and E(k) is
negligibly greater than unity. K(k), however, remains finite,
becoming large (the solitary wave limit) only for k extremely
near unity; departures as small as 10 - 4 0 are not insignificant.

Iwagaki (1967) noted that a useful approximation would result if
we simply set k and E(k) to unity, and determine K(k) as a
function of water depth, wave height, and wave period. The
Jacobian elliptic functions reduce to their hyperbolic-function
limits (hence, the name 'hyperbolic waves'), greatly sidplifying
engineering computations at little sacrifice of accuracy. In
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particular, the function cn(e;k) becomes sech(6 ) and sech(e) is
not periodic. This poses no real problem. We simply imagine a
succession of waves patched together where the troughs should be.
At these patches, the wave description is not at all accurate
(the direction of flow is wrong, for example) but since effects
are concentrated at the crests we proceed on the hope that the
net error will be small. In this Phase I effort w6 further
simplify matters (greatly) by truncating all expressions for
hyperbolic wave features (particle velocities, energy density,

and so forth) at the leading, dominant terms, neglecting in
particular powers of H/h.

Given these assumptions, we proceed as follows. Let E denote the
wave energy density per unit area averaged over the length of the
wave. Assume that the rate of energy dissipation per unit area
is given by

Et = E = kfpub (35)

Averaging this over the wavelength we write the energy conserva-
tion equation as

t0

(EVg)x + E - 0 (36)

in which Vg is the group velocity and ub ie.the fluid velocity at
the bed; kf is a friction coefficient equal to f/8 in which f is
the Darcy-Weisbach friction coefficient.

From hyperbolic theory we use the approximation

C
ub  /(gh) H/h sech? (2Kx/L)

in which K is approximated by
C

K - T/(3gH)/4h (37) C

The reader will note that this is essentially the solitary wave C
approximation, again neglecting H/h. The advantage is just that

- we retain L explicitly for purposes of defining wavelength C*0

.. averages (the average energy density over a solitary wave being
zero).

Substituting into

E i 1/L ILE dx

we find
0

E a kfP? (g/h) tanhK (8/3 + 4/3 sech2K + sech 4 K)/5K

On the other hand, the total energy density is

E - 2/3 PgH 2 (1 - 3 /(2K)]/K
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from which we can evaluate Ex as

Ex a PgHx/A 2 (AH - 1)

in which A is the constant TV(3g)/4h.

Substituting these expressions for E x and Et into the energy
conservation equation gives an expression for Hx which can be
integrated analytically to give an expression relating Hl, H 2 ,
and X (the subscripts denoting wave height at the beginning and
end of an interval X). This expression is a cubic in /H 2 which
can be solved in the form

2 + P8 2 + q - 0

82 = VH 2

p - K2 e/(xel + K2el - Kl)

e8 - /H 1

K1 - 20h /[kfT/(3g)]

K2 - 15 t /2kf
3

q - Kle /(xe + K2el - Ki)

Graphs showing attenuation computed in this manner are shown in
Figures 11 - 13 for initial wave amplitudes (dimensionless) of
0.2, 0.4, and 0.6, respectively. In each case, H2 is shown
versus reduced propagation distance (X/L) with relative wave0
length as a parameter. The Darcy-Weisbach coefficient was taken
as 0.02 giving a value for kf of 0.0025. This corresponds to a
Manning coefficient of about 0.028 in a water depth of 100 feet.

O

Despite the appearance of these curves, it will be seen that in
practice we will generally encounter dimensionless propagation C

distances on the order of 10 to 20 so that typical height
reductions will be on the order of only 10%. o0

3.2.2 Breakina Dissipation
3

We have found no information directly pertinent to defining the S

breaking zone on the banks and the associated energy losses.
This remains an important item for future research including
several lines of approach. For example, the three-dimensional
solitary wave theory should be pursued for particle velocities
and accelerations in order to define a breaking criterion
analogous to the familiar H/h - 0.78. This condition is obtained
from the McCowan solitary wave theory under the kinematic
assumption that particle velocity at the crest equals wave
celerity.

Phenomenological models of wave breaking should also be inves-
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tigated. The non-saturated breaker theory of LeMehaute (1962) is
an example of such a theory which attempts to relate breaking
energy dissipation to simplcr, underlying concepts such as rate
of energy loss in an analogous hydraulic jump.

It is important, however, that at least a limited experimental
series be undertaken to give empirical guidance in this area.
Without this, any theoretical kinematic or dynamic breaking
criterion must be considered speculative.

3.3 Channel Branching Effects

The final topic of general interest is the height loss associated
with splitting of the channel into branches. This can be an
extremely complex problem -- every site being unique -- if the
channel junction is not smaller than the length of the wave. For
short waves, the methods of coastal engineering must be invoked,
following the waves by ray-tracing or some other method account-
ing for refraction, diffraction, reflection, and so forth. No
simple general rules would suffice.

But in the event that the waves are reasonably long with respect
to the size of the junction, it is possible to make a very great
simplification in the analysis. In this approximation -- the
compact junction assumption -- we introduce the notions of
channel admittance and impedance (here following Lighthill,
1978).

If the junction is compact, then it is reasonable to assume that
each branch is subject to much the same surface elevation, or
pressure excess. The admittance of a channel is defined as the
ratio of volume flow to pressure excess and is named by analogy
with the electrical admittance function which is the ratio of
current to voltage difference. In the case of a channel of
arbitrary cross-section, Lighthill shows that the admittance, Y,
is given by

C

Y - A / (Pc)

in which A is the channel cross-sectional area, P is density, and
c is wave celerity. The impedance, Z, is defined as the recipro-
cal of the admittance.

Now consider a multiple junction -- assuming continuity of
pressure and volume flux -- with an incident wave, f, in one
branch. Lighthi!! shows that the ratio of the transmitted wave
height, h (which is the same in all secondary branches), to the
incident height is

h/f - 2Y1 / (Y1 + ZYi)

in which the summations are taken over the secondary channels.

Similarly, the reflected wave amplitude ratio, g/f, is given by
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g/f - (Y1 - EYi) / (Y 1 + EYi)

In these expressions we assume that we are dealing with a single
wave and we ignore the possibility that with multiple waves the
waves reflected from one branch would arrive as incidentwaves at
another branch so that superposition would have to be considered.

Lighthill treats the case of periodic waves through multiple
branches by a straight-forward extension of the above ideas.
In our case, however, we will be content to consider each wave as
a separate entity.

Despite the approximate nature of this treatment, it is felt
adequate for our purposes. Its primary limitation is the
assumption that junctions are compact. But even in the case that

this is not strictly true, the above expressions still give a
useful first order estimate which can only be improved with

considerable effort.
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4. PREDICTIONS AND COMPARISONS WITH OBSERVATIONS

4.1. Parametric Presentation of Numerical Results

We have exercised the numerical model described in the previous
chapter for a range of trapezoidal channel sizes and shapes, and
for a range of center wave amplitudes.

The basic results are shown in the following five four-part
figures, Figures 14-18, showing results for bank slopes of 15,
22.5, 30, 45, and 60 degrees, respectively. In each figure we
show four curves, corresponding to relative wave amplitudes at
the centers of the channels of 0.1, 0.2, 0.4, and 0.6. The four
parts of each figure, designated a-d, present data for bottom
half-widths of 1.0, 1.5, 2.0, and 5.0, respectively.

These figures clearly show the expected trends. Amplification
increases with increasing channel width, with increasing central
wave height, and with decreasing bank slope. Amplifications of 2
to 3 appear typical.

&

In order to demonstrate the dependence on b~ttom width, holding
other factors constant, we present Figure 19. This figure shows
the amplification at the shoreline only, as a function of bottom
width, holding bank slope constant at 15 degrees. The result is
clearly that within the range of widths cohsidered here, ampli-
fication is not sensitive to width.

-4
This finding is very comforting in view of the limitation of the
theory to channels which are not too wide. The indication is
that for widths as great as five, or so, spurious amplificationV
associated with excessive width is not a problem.

3

In Figure 20, we fix the bottom width at 1.5 and show amplifica- O
tion at the banks versus bank slope. Here we see a strong
dependence on slope, as expected. We also see a deficiency of
the free-surface boundary condition treatment in the case of a C
very gentle slope. As already discussed, in our simple square

- mesh scheme, several surface points are estimated using an
. approximate technique when the slope is 15 degrees. While that

technique gives a reasonable estimate and does not destroy
convergence, it does appear to underestimate the bank 3
amplification by about 10% in this case.

In order to see this, we have plotted the values corresponding to
the analytical solution for a 15 degree triangle; these points
give the dashed extensions of the curves to 15 degree slope.
Noting from Figure 19 that bottom width is not a sensitive
parameter, it is reasonable think that this analytical solution
will be close to the desired trapezoidal value for this width.

Indeed, Figure 20 shows that the points corresponding to the
triangle solution do appear to fall at about the expected values.
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(/ 4.2. Comparisons with Observations

4.2.1. Data of Peregrine

We have already discussed Peregrine's (1969) data in connection

with Figure 8. Suffice it to say here that we have carefully
scaled the surface profilep of his two figures to determine his
observed bank amplifications, and have then compared the results
of our numerical model with those values. In every case, our
model agrees as well with the data or better than does Pere-

grine's own computed points.

4.2.2. Lituya Bay Landslide Wave

Comparisons here are really speculative but nevertheless of

interest. While we have some idea of the peak water levels from

Figure 1, we do not have observations of the waves at the center

of the Bay. However, we can borrow- the numerical estimates of
Chiang, et al (1981) who simulated this case.

The basic results of Chiang, et al, are summarized in the

following table where the nine station loc*.iions are as indicated
in Figure la.

Station # Model Peak Height Nearby Observed

1 200 ft > 1000

2 120 350

3 80 130

4 60 100

5 30 100 c

6 50 90 C
C

7 20 --

8 40 85

9 25 30

Clearly, at Stations 1 and 4, the comparisons are not appropriate

since what is actually occurring is a normal sort of runup in

those areas. Station 7 is in the shadow of the island and is

difficult to interpret. But for all other points where we might

expect some sort of bank amplification we do, in fact, find one.

If the model values are assumed to be reasonable estimates, then

the apparent amplification is about 2 to 3 typically.
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It does appear reasonable to think the computed values are valid.
To be greatly off, it would be necessary to have mis-estimated
the slide mass by a considerable amount. Since the slide energy
goes like the mass and since wave height goes like thee square
root of energy, a 100% error in slide mass estimation would
correspond to about a 40% error in computed heights. It is
doubtful that the indicated values are that much in error.

Although this example is very indirect and somewhat speculative,
it is nevertheless welcome in view of the general lack of data of
any other sort. It does appear to be consistent with the general
idea that amplifications on the order of a factor of two are
typical.
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5. EXAMPLES

In this section we give one detailed example of the foregoing
methods in estimating explosion wave vulnerability, and one more

speculative example.
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Assume the incident channel has a depth of about 500 feet and a
cross-sectional area of about 3XlO ft 2. Let the left branch
have a depth of about 500 feet also, with an area of about 7XI'$ ;
let the right branch have a depth of about 300 feet and an area
of about 2X10 6 .

The second example is a rough illustration only. Figure 23 is
reproduced from Jane's Defence Weekly, Sept 6, 1986, and shows a
satellite photo of a supposed Soviet submarine base. According
to the accompanying article, the facility is for 'Typhoon' class
submarines. The article further suggests that the quays visible
in the photo (within the box) are on the order of 200 meters in
length.

Taking this as a rough guide, we estimate the total width of the
channelized geometry to be about 2400 feet. Assuming a slope of
about 15 degrees and a depth of, say, 250 feet, we arrive at an
estimate of bottom half-width (dimensionless) of about 1.5.
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Figure 23: Aerial Photo of a Soviet Submarine Base in a
* Channelized Geometry (Kola Peninsula; Photo

Reproduced from Jane's Defence Weekly, <
Sept. 6, 1986).
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6. CONCLUSIONS AND RECOMMENDATIONS

This Phase I effort has summarized the major known features of
large amplitude znoidal or solitary waves in channels, and has
provided simple formulas to estimate wave generatiorF by both
explosions and landslides. The salient points are:

In a uniform channel, waves may propagate long distances
with little loss owing to the smallness of the friction
effect and the confinement afforded by a channel.

Opposing influences include wave diminution by channel
branching, channel irregularity, and breaking in the shallow
wedge-like segment of the crest propagating along the dry
bank.

In the case of sufficiently long waves, channel branching
effects are reasonably easily estimated, and channel
irregularities become secondary.

Breaking losses are still unknown. In wide channels with
moderate slopes the losses will be small since the breaking
zone is expected to be very limited. In any case, the
breaking zone coincides with the target zone so that this
form of dissipation is not, in a sense, 'wasted.'

There may be significant enhancement of wave height on the
banks, a sort of 'lateral shoaling' in the shallower regions
on the slope (although the effect extends even beyond the
bank into the flat-bottom region of a trapezoidal channel). C

Figure 24 shows the approximate upper limit of the amplifi-
cation factor as a function of bank slope and center channel C
amplitude. The more extreme portions of this figure would
be greatly modified by breaking effects.

c
- Additional effects, not specifically discussed earlier, may also

play a significant role in the wave description. For example, a C
0channel with gradually changing depth or width may amplify (or

attenuate) the wave owing to familiar mechanisms of shoaling and
compression of wave orthogonals (coincident with the banks). In
particular, there may exist important sites for which wave
generation could occur in relatively deeper water (say, offshore
or in an embayment) and then propagate into the channel
(upstream). In this way, the center channel wave amplitude might
be much greater than could be achieved by a detonation within the
channel itself. This would have the double effect of increasing
the bank amplification factor as well (moving up to a higher
curve in Figure 24).

This Phase I effort was primarily intended to be arproblem
review and discussion. In Phase II we recommend that a research
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effort be undertaken to extend our understanding of these
questions. In particular, we suggest the following.

The three-dimensional wave theory should be further pursued
to eliminate the limitations discussed earlier. That is, it
should be extended to handle both wide channeli (single
banks in the limit) and gentle slopes.

The numerical implementation given here should be extended
to handle irregular channel geometry and to improve the
treatment of the boundary conditions.

The numerical model should be exercised for a variety of
channels of interest.

The three-dimensional theory should be pursued to derive
expressions for fluid particle velocities and accelerations.

Using these results, breaking criteria should be sought.
For example, particle velocities and accelerations along the
portion of the crest lying on the dry bink should reveal the
occurrence of a critical condition indicating incipient
disintegration of the wave (either kinematic or dynamic).

A supplementary, small experimenta- program should be
performed to guide and verify analytical work, especially in
the matter of breaking criteria.

Based on all the above, improved methods of estimating bank
heighLs should be developed.

Similarly, expressions should be derived relating gross wave
and channel characteristics to over-bank dynamic effects
(wave forces on bank structures).

The implications of these results should be assessed for
wave behavior in non-channelized geometries. For example, a c

solitary-like waveform in a complex three-dimensional
geometry may at some points interact with slopes in a manner
giving rise to amplification. This might be ultimately <
related to the problem of behavior in a Mach-stem zone.

The developed methods should be implemented to assess the
vulnerability of selected sites (worldwide) to both ex-
plosion and landslide effects using the most appropriate
generation descriptions available.
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Listing of Channel Wave Program CHANWAVE.PAS, page 1

{$V-) ($R+) (SU-1 Sd+j (SK-)

ipoa~ bankWaves;

Procedure Pause;

Junk :char;

write(' .. Press Any Key To Continue .. :45);
read(kbd, junk);
writein;

-~~~~TIMER MODULE--------------

nTimers =5;

beginTime: £Arui1..nTimers] al real;

i: byte;

infinity = 1.0130;

L=~ i :=1 jt nTimers A2 beginTimin.iJ infinity

fancin currentTim.: real;

regPack =Z2X
ax, bx, cx, dx, bp. si, di, da. on, flags: integer;

X
regs: regPack;

bezin
Wil regs A2

ax :=2WOO;
msdos(regs);
currentTime !=lo(dx)/100 + hi(dx) + 60 *(lo(cx) + 60 *hi(cx))

And

nproceadiiz beginTiaer(n: byte);
bkAgin

ifn in (1. .nTimers] than begiriTime(nJ currentTime

fuanction *lapaedTime(n:byte): real;

infinity =1.0E30;
bAxin
if n in (1. .nTimersJ ZJhn elapsedTime :=currentTime beginTime(i)

AJlm elapsedTime := infinity

-~~~~END OF TIMER MODULE----------1

0e



Listing of Channel Wave Program CHANWAVE.PAS, page 2

anyStr = atrin (255J;
str2 = strin rfl2;
str3 = string(31;

const
omegaFactor =1.0;
minIterations =100;
maxlterations =2000;
mnax~ows =21;
maxCols =151;
epsilon =1.OE-7;
infinity =1.0E30;
tolerance =1.OE-6;

YIX
response: char;

index, row, col, nRows, aCols, iterCouant,
showSteps, zSteps, baseCol, midCol, coll4, co134, triCol: integer;

midflax, lastCol: AxZM[(1. maxRowsj 21j integer;

depth, width, alpha, oldSum, newSum, topWidth, heightO,
delY, delZ, beta, betaSqr, betaSqlnv, spectralliadius, omega,
aZero, bZero, delySqr, delSurf. factori, factor2,
tanAlpha, cotAlpha, surfGrad, bZeroPrimevuew. theta, omega~pt,
coeffl , coeff12, duration, oldCorner, newCorner, convergeTest: real;

u: ax = .maxRows, 1. .aaxColsJ 21 real;

height: ArXMa[l. .- axColsJ al real;

OK, showResulta, converged, save: boolean;

onBoundary: autu[1. maxRowaJ .gf boolean;

fgniojg tan(theta: real): real;
berin

tan := sin(theta)/ou(theta)

proedre bell(freq, time: integer);

sound(freq);
delay(time);
noSound;

prcdr wait(message: anyStr);

ch: char;

write(message);
ree until. keypressed;

read(kbd, ch)

kr~swtdu~r getlnput;



Listing of Channel Wave Program CHAKWAVE.PAS, page 3

b*i
clrscr;
write('Enter depth of the channel: ':55);
readln(depth);
write('Enter number of steps in depth direction: ':55);
readln(zSteps);
write('Enter bottom width of channel: ':55);
readln(width);
write('Enter bank inclination (degrees from horizontal): ':55);
readln(thata);
alpha := 90 - theta;

.,L (theta <= 0) aX (theta > 90) JIMn
begin

bell(500, 500);
writeln('Bank slope out of legal range... .exiting. ..);
wait('. ..press any key...'1);
halt

write('Enter wave amplitude at left boundary: ':55);
readln(height0);

showResults :=false;write('...Want to see intermediate results... Y/N ?: ':55);
ZReDAt

read(kbd, response);-
response := upease(response)

uantil response in ['Y', IN'];
writeln( response);
if1 response = 'VI Lha
bemin

showResults := true;
write('...After every how many iterations ?1: ':55);
read ln( showStops);

write('Save results to a text file... Y/N ?: ':55);

read(kbd, response);
response :=upease(response)

uantil response J& ('YI, IN'J;
writeln(response);
save := response =''

procedure initialize;

zRow, widthRow, zPtBelow, yPtBelow, zPtRicht, yPtRight: real; C
Cberin

converged ::false;
iterCount 0;
oldSum ::0;
newSum :z0;
oldCorner ::0;
newCorner ::0;
convergeTest ::1.0;
delZ depth /zSteps;
delY ::delZ;
beta ::delY/delZ;
delySqr := delY * delY;
n~ows zSteps + 1;
alpha ::alpha * pi / 180;
tanAipha :~tan(alpha);



Listing of Channel Wave Program CHANWAVE.PAS, page 4

if theta 90 Jgbnn cotAipha := infinity 21 cotAlpha :=I / tanAlpha;
factori : cotAipha / beta;
factor2 :=beta * tanAlpha;
topWidth width + depth * tanAipha;
nCols :=trunc(topWidth / delY + epsilon) + 1;
LQX col ~1 &2 nCols d2~ height~col) := 0;
LQ~r row ::1 Ig nRows d2 fr. col :=1 1& nCols dg urrow,colJ 0;
121X row 1 &2 nRows d

zRow :delZ * (nRows - row);
widthRow := width + zRow * tanAlpha;
lastCol~row) := trunc(widthRow /delY + epsilon) + 1;
onBoundary(row) : ((widthRow -(lastCol~row) - 1) * delY) < epsilon);

1=~ row :~1 t2 riRows d2
f=. col :~1 t2 lastCol(rowJ _d

u~row,colJ : tanAipha * sqrt(topWidth)
(1 -sqrt(l - (col -1) * delY / topWidth)) -0.4 *(row -1) *delZ;

baseCol trunc(width /delY + epsilon);
midCol baseCol d;L 2;
col14 baseCol A;jx 4;
co134 3 * col14;
triCol (baseCol + nCols) AL '
"zx row 1 1& (n~ows - 1) Ag
bfiD

col :=baseCol;

yPtBelow delY * (col - 1);
zPtBalov delZ * (n~ows - row - 1);
OK :=((width + zPtBelow * tanAipha - yPtBelow) >= -epsilon);
zPtRight delZ * (nflows - row);
yPtRight delY * col;
if OK Lhan OK :=((width + zPtRight *tanAipha -yPtflight) >= -epsilon);
col :~col + 1

uil~U n OK;
midMax~row) col - 2

mid~ax~nRowa) baseCol;
writein;
writeln(nRows. 'rows, ', nCols. columns.');
writeln;
frX row =: 1 t2 nRows dJ2 c

writeln(row:5, mid~ax~row]: 10, lautCol~row]:10, onBotzndary~rowJ: 10); c
writaln;
wait('.. .press any key...');
vyitein; writein;
betaSqr :=beta *beta;
botaSqlnv := I betaSqr;
aZero :zwidth + 0.5 * tanAlpha;
bZero := topWidth;
surf~rad ::aZero / bZero;
delSurf aurfGrad * delZ;
bZeroPrime :=tanklpha;
spectralRadius :

(cos(pi/(nRows-1)) + betaSqlnv * cos(pt/(nCols-1))) /(1 + betaSqlnv);
omega~pt := omegaFactor * 2 / (I + sqrt(l - sqr(spectralRadius)));
omega :=omega~pt;
writeln('Columns printed: '. '1':5, coll4:5, midCol:5,

co134:5, baseCol:5, triCol:5. plus points on slope.');
writeln;



Listing of Channel Wave Program CHMNWAVE.PAS, page 5

coeffl omega / (2 * (1 + betaSqr));

coeff2 1 - omega;

2XngftiUX topRow;
.nZ2Sjiar upperLef tCorner;

u(1,13 : u[1,2J
Ad;
2X~ngAArA midTop;

I=x col :=2 &2 mid~ax(l) A2 u(.colJ u[2,colJ + delSurf
and;
2zrocdazn upperRightWedge;
Y"x

delileight, factor: real;
func.tion useTop(col: integer): boolean;
berin
delBeight :=1 - delY * (col - baseCol - 1) o otAipha;
factor ::del~eight. * cotAipha / delY;
useTop ::factor <= 1;

Mwd;

iJ= col := (midflax(1J + 1) 1& laitCol(1] 42
±~useTop(cal) I&=n
u[1,colJ : u[lcolJ + factor * (u(1,col-1] - u(1.col]) +

surf Grad * deileight
aima

u(1,colJ : u[1,col-1J + (delfleight/deiZ - factor2)
(u(2,col-1J - u(1,col-1]) + surfGrad * dei~eight;

iLdei~eight < epsilon tWMn
u(1.coll := 3 * (u(1,col-1) u(1,col-2J) + u(1,col-3J

upperLeftCorier;
uidTop;
upperRightWedg.

C

2Z2QtdU=z midRow(row: integer);
nzxadj leftPoint;
begin C

ia~row,l] : u~row.2) C

nrodax midPoint;
12X col. 2 12 uidflax~row] &

ulNev u~row~col+1J + u~row~col-1J
+ betaSqr * (u~row+l,col] + u~row-l,colJ) -delySqr;

u~row~col] := coeffi * u~ew + coeff2 * u~row,colJ;
2" 1

2nd;
2roediare rightPoints;

L2gx col :=(midllax~rowJ + 1) 12 lastCol~row) d2
u~row,collJ: u[row,col-l) +
(I / (1 + cotAlpha / beta)) * (u(row-l,col] - u~row~col-1J)

becin



Listing of Channel Wave Program CHANWAVE.PAS. page 6

leftPoint;
midPoints;
rightPoints

ipoedr bottoaRow;
procedure lowerLeftCorner;

Prcdr midflottom;
bezri

frz col :=2 2 mid~ax~nRowsJ d2 u~riRown,eolJ u~nRows-1,col]

iproedur lowerRightCorner;

uAslfBottoa, uAslfSide: real;

uAslfflottom,= u~nRows-1, lastCol~nRows]];
I theta < 45 .Zhin
uAslfSide := tanRows-1,lastCol~nRcwsJJ +
factori * (u~zafows-1.lastCol~nRowsJ-1J u~nRows-1,lastCol~nRowz])

uAslfSide := u~nRows,lastColcnRowsJ-1J 4.
factor2 * (u~nRows-1,lastCol~uiRows]-l] -u~nflows~lastCol~nRowsJJ);

u~nRows,lastCol~nRows1j 0.5 *(uAslfBotton + uAslf~ido)

loverLeftCorner;
mid~ottom;
loverRightCorner

and; -

progdur normalize;

uZero: real;

uZero u[1.1];N
oldSum ::new~um; C
nevSum 0;
otdCoriier :newCorner; S
frr row 1g af~wx d2
frX col I: 1 lastCol~rowJ Ag

u[row~colJ : u~row~colJ - uZero;0
newSum new~um + abs(utrow~col]) I

newCorner u~n~ows~lastCol~nRowsj]

fuion~±f psiA: real;
YAxr V

sum: real;
row, col: integer;

baAsin
sum := 0;
f_2X row 1: 12~ (nRows - 1) 42
fLqr col ::1 t& (nCols - 1) d2

sum :~sum + u~row,colJ+u~row~col+1)+u(row+lcolJ+u~ro+1.col+1J;
psiA (dely * delz / &Zero) * (sum / 4);



Listing of Channel Wave Program CHANWAVE.PAS, page 7

funtion psiB: real;

topSum real;
row, col: integer;

topsum 0;
row :
L12Z Co1 1 12 (nCola - 1) d2

topSum ::topSum + u~row,col) + u~row,col+lJ;
psiB :=(dely / bZero) * topSum / 2

2ad;

fu~nction heightVar(height: real; col: integer): real;

numerator denominator :real;

numerator ::height * height * bZero
(1- (bZeroPrime * aZero) /(bZero *bZero 3));

numerator :~numerator * u(1,colJ;
denominator := 2 * aZero * (psiB - puj.A);
heightVar := numerator / denominator

qnaZ~xa surf aceVariat ion;

L=x C01 := 1 12 nCo12 A2

height~col] := (heightO +
heightVar(height0, col) )/heightO;

writoln(col:10, height~oolJ:10:3)

C

2X29&iUX* compute;

iterCount := iterCount + 1;
topflow;
LM row := 2 t2 (nflows-1) 42 uidflow(row);
bottomRow;
normalize;
writeln(iterCount:10, new~um:20:4, newCorner:10:3.

convergeTest: 15:6, omega: 10:3)
MW;

.C

funcion finished: boolean;

convergeTest := abs((newSum - oldSua)/newSum);
converged ::convergeTest < tolerance;
finished ::(converged Andg (iterCount >= minlterations))
2x (iterCount >= maxlterations)

MW~;

RrkqBiU. saveResults;
XAX

widthStr: str3;
thetaStr: str2;
stepStr: str3;
heichtStr: str3;



Listing of Channel Wave Program CRAKWAVE.PAS, page 8

fileName: ajtjrig(121;
saveFile: text;

procedur fill2(iA~r xStr: str2);

whbile longth(xStr) (2 A2 xStr :~'0' + xStr

nz2ocedure fill3(yAZ xStr: str3);
berin

whi1l length(xStr) < 3 A2 xStr :'0' + xStr

str(width*10:O:O, widthStr);
str(theta:0:0, thetaStr);
str(zSteps:0, stepStr);
str(heighta*1000:0:0, heightStr);
f112(thetaftr);
I ill3(widthStr);
fill3(stepStr);
I ill3(heightStr);
fileName, := thetaStr + widthStr + stepStr + '+ heightStr;
assign(saveFile, fileName);
rewrite( save! ii.);
I=x index := 1 &2 5 42 writeln(aav*File);
writeln(saveFile, 'Data file: ', fileName);
writoln(sav*Filo);
writein~savelile, 'Depth ',depth:O:1, ' -Bottom width ',wIdth:O:1,

' Theta ' theta:O:l. 'Top width ',topWidth:0:1);

writaln(saveFile, 'delta Z = '.delZ:O:2, delta Y ' , delY:O:2.
16 Row- U nows:O, # Columns '.nColu:0);

writeln(saveFile. 'Omega = 1 omega:O:S,.-,
' Convergence tolerance =I, tolerance);

writeln(sav*File, 'Sum over matrix =', newSuu:O:4,
* psiA = ' psA:O:4, ' pail ' psiB:O:4);

writeln(saveFile);
writ*(sav*File, iterCount:O, *iterations completed; computations ';C
,U converged than writaln(saveftle, 'converged.')
SIM* writoln(savelile, 'did not converge.');

writeln(saveFile, 'Relative error in matrix sum = .convergeTest);

writeln(saveFile, duration:O:O, ' seconds for Iterations.');
writeln(saveFile);
writeln(saveFile);
writeln( save! ile, 'Transverse surface profile:');
writaln(saveFile);
writeln(save~ile, 'Colusn':12, 'Y':7, 'Amplitude':13);
writeln( savelile);
J=~ col := 1 &.2 nCols d2 writeln(savelile, col:10,

delY * (col - 1):10:2, height~col]:10:3);
writeln( save~ile);
writeln( saveFile);
writeln(aaveFile, 'Solution matrix (rotated -- 1,1 is at upper right):');
writeln(saveFile);
writeln( saveFile);
write(savelilo. 'ROW');
LQZ row := nRows dontoX 1 A2 write(saveFile. row:8);
writeln( saveFile);
writeln(saveFile, 'COL');
writeln( saveFile);
L=~ col := 1 &2 nCols d2
bezin

write(saveFile, col:2,'


